Human screams communicate at least six emotions

Human screams communicate at least six emotions

scream

Human screams signal more than fear and are more acoustically diverse than previously thought, according to a study published April 13th 2021 in the open-access journal PLOS Biology by Sascha Frühholz of the University of Zurich, and colleagues. Remarkably, non-alarming screams are perceived and processed by the brain more efficiently than alarming screams.

In nonhuman primates and other mammalian species, scream-like calls are frequently used as an alarm signal exclusively in negative contexts, such social conflicts or the presence of predators or other environmental threats. Humans are also assumed to use screams to signal danger and to scare predators. But humans scream not only when they are fearful and aggressive, but also when they experience other emotions such as despair and elation. Past studies on this topic largely focused on alarming fear screams, so the broader significance of various scream types has not been clear. In the new study, the researchers addressed this knowledge gap using four different psychoacoustic, perceptual decision-making, and neuroimaging experiments in humans.

Twelve participants were asked to vocalize positive and negative screams that might be elicited by various situations. A different group of individuals rated the emotional nature of the screams, classified the screams into different categories, and underwent functional magnetic resonance imaging (fMRI) while listening to the screams.

The results revealed six psycho-acoustically distinct types of scream calls, which indicated pain, anger, fear, pleasure, sadness, and joy. Perhaps surprisingly, listeners responded more quickly and accurately, and with higher neural sensitivity, to non-alarm and positive scream calls than to alarming screams. Specifically, less alarming screams elicited more activity across many auditory and frontal brain regions. According to the authors, these findings show that scream calls are more diverse in their signaling and communicative nature in humans than frequently assumed.

Source: Read Full Article